Directed Gaussian graphical models with toric vanishing ideals

نویسندگان

چکیده

Directed Gaussian graphical models are statistical that use a directed acyclic graph (DAG) to represent the conditional independence structures between set of jointly normal random variables. The DAG specifies model through recursive factorization parametrization, via restricted distributions. In this paper, we make an attempt characterize DAGs whose vanishing ideals toric ideals. particular, give some combinatorial criteria construct such from smaller which have An associated monomial map called shortest trek plays important role in our description models. For ideal is toric, prove results about generating sets those

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting Directed Graphical Gaussian Models with One Hidden Variable

We discuss directed acyclic graph (DAG) models to represent the independence structure of linear Gaussian systems with continuous variables: such models can be interpreted as a set of recursive univariate regressions. Then we consider Gaussian models in which one of the variables is not observed and we show how the incomplete log-likelihood of the observed data can be maximized using the EM. As...

متن کامل

Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models

We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor, requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper-parameter, which can be set to its min...

متن کامل

Copula Gaussian Graphical Models *

We propose a comprehensive Bayesian approach for graphical model determination in observational studies that can accommodate binary, ordinal or continuous variables simultaneously. Our new models are called copula Gaussian graphical models and embed graphical model selection inside a semiparametric Gaussian copula. The domain of applicability of our methods is very broad and encompass many stud...

متن کامل

Directed graphical models

for some functions f and g. Probabilistic graphical models are a way of representing conditional independence assumptions using graphs. Nodes represent random variables and lack of edges represent conditional independence assumptions, in a way which we will define below. There are many kinds of graphical model, but the two most popular are Bayesian (belief) networks1, which are based on directe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2022

ISSN: ['1090-2074', '0196-8858']

DOI: https://doi.org/10.1016/j.aam.2022.102345